Effects of Various Modeling Schemes on Mist Film Cooling Simulation
نویسندگان
چکیده
Numerical simulation is performed in this study to explore filmcooling enhancement by injecting mist into the cooling air with a focus on investigating the effect of various modeling schemes on the simulation results. The effect of turbulence models, dispersed-phase modeling, inclusion of different forces (Saffman, thermophoresis, and Brownian), trajectory tracking, and mist injection scheme is studied. The effect of flow inlet boundary conditions (with/without air supply plenum), inlet turbulence intensity, and the near-wall grid density on simulation results is also included. Using a 2-D slot film cooling simulation with a fixed blowing angle and blowing ratio shows a 2% mist injected into the cooling air can increase the cooling effectiveness about 45%. The RNG k-ε model, RSM and the standard k-ε turbulence model with the enhanced wall treatment produce consistent and reasonable results while the turbulence dispersion has a significant effect on mist film cooling through the stochastic trajectory calculation. The thermophoretic force slightly increases the cooling effectiveness, but the effect of Brownian force and Saffman lift is imperceptible. The cooling performance is affected negatively by the plenum in this study, which alters the velocity profile and turbulence intensity at the jet exit plane. The results of this paper can serve as the qualification reference for future more complicated studies including 3-D cooling holes, different blowing ratios, various density ratios, and rotational effect.
منابع مشابه
Simulation of Mist Film Cooling on Rotating Gas Turbine Blades
Film cooling technique has been successfully applied to gas turbine blades to prevent it from the hot flue gas. However, a continuous demand of increasing the turbine inlet temperature to raise the efficiency of the turbine requires continuous improvement in film cooling effectiveness. The concept of injecting mist (tiny water droplets) into the cooling fluid has been proven under laboratory co...
متن کاملSimulation of Mist Film Cooling at Gas Turbine Operating Conditions
Air film cooling has been successfully used to cool gas turbine hot sections for the last half century. A promising technology is proposed to enhance air film cooling with water mist injection. Numerical simulations have shown that injecting a small amount of water droplets into the cooling air improves film-cooling performance significantly. However, previous studies were conducted at conditio...
متن کاملCFD Model Validation and Prediction of Mist/Steam Cooling in a 180-Degree Bend Tubes
To achieve higher efficiency target of the advanced turbine systems, the closed-loop steam cooling scheme is employed to cool the airfoil. It is proven from the experimental results at laboratory working conditions that injecting mist into steam can significantly augment the heat transfer in the turbine blades with several fundamental studies. The mist cooling technique has to be tested at gas ...
متن کاملTwo-phase Flow Simulation of Mist Film Cooling with Different Wall Heating Conditions
Effective cooling of gas turbine combustor liners, combustor transition pieces, turbine vanes (nozzles) and blades (buckets) is a critical task to protect these components from the flue gas at extremely high temperature. Air film cooling has been successfully used to cool these hot sections for the last half century. However, the net benefits from the traditional methods seem to be marginally i...
متن کاملAn Investigation of Applicability of Transporting Water Mist for Cooling Turbine Vanes
This paper presents a numerical study to investigate the feasibility of transporting mist through the internal cooling channel in high-pressure turbine vanes for film cooling over the vane's surface. The idea of using mist film cooling to enhance conventional air cooling has been proven to be a feasible technique in the laboratory conditions and by computational simulations. However, there is a...
متن کامل